- health and beauty products, which I covered in a series of articles
- pesticides and herbicides
- industrial pollutants
- mold
- preservatives and flame retardants
- petrochemical fuels and solvents
- plastics and cookware
Low doses of toxins can be harmful
Traditional studies for toxicity aim to find the lowest observed adverse effect level (LOAEL) and no observed adverse effect level (NOAEL). In other words, a level of a toxin that is known to cause harm is experimentally lowered until the toxic effects disappear. Toxicity studies usually test large doses to determine far-off endpoints like cancer and death, while ignoring small doses and subtle effects like endocrine disruption and immunotoxicity. Furthermore, most studies assume that everyone responds the same. No consideration is made for fetuses, young children, those in puberty, or people with chronic diseases. However, a growing body of research indicates that chronic, low doses of many toxins can also be very harmful. Frogs that were given a mixture of nine pesticides at 10 to 100 times below EPA standard safe levels had slowed growth and higher levels of corticosterone and were more likely to be infected with a common pathogen, highlighting the shortcomings of regulatory studies that only look at an isolated chemical in large doses (1). In 2002, the National Toxicology Program reported adverse effects from low-dose exposure to common endocrine disruptors, including bisphenol A (BPA), genistein (an isoflavone derived from soy), methoxychlor (an insecticide), nonylphenol (an industrial chemical that can be found in drinking water), and vinclozolin (a fungicide), mostly in rodent studies (2). Ten years later in a large review, more adverse effects were confirmed for low doses of plasticizers, pesticides, phytoestrogens, industrial chemicals, preservatives, surfactants, flame retardants, and more (3). These researchers also explored how study design choices, such as animal strain selection and statistical methods, can skew results.cdx Endocrine disruptors, which can mimic and interfere with the body’s natural circulating hormones, are especially concerning (4). BPA is the endocrine disruptor that gets the most press, but a wide range of substances is continually being added to the list, including dioxins, PCBs, and some pesticides. When you look at BPA levels that have been found in human serum—we’re talking nanograms per milliliter, which is analogous to less than a teaspoon of water in an olympic-sized swimming pool—they may appear too small to be significant (5). However, circulating blood estrogen levels in young girls are 100 times smaller, at under 15 picograms per milliliter. From this perspective, it is easy to see how very “low” doses of toxins can have huge effects when they far outnumber naturally circulating hormones.Some toxins show different responses at high doses compared to low doses
Even more concerning is that low doses of a toxic substance can sometimes act differently in the body than high doses. For these chemicals, what happens to the body at high doses cannot be used to predict what will happen at low doses, a phenomenon called a non-monotonic dose response (6). Because regulation is designed to test a high toxic dose and keep decreasing it until the no observed adverse effect level (NOAEL) is found, many low-dose effects are completely missed and not reported.Is there really such a thing as a safe “low-level exposure” for an environmental toxin?Substantial evidence of non-monotonic effects has been found in everyday environmental toxins. In mice, fetal exposure to low doses of diethylstilbestrol resulted in prostate enlargement, but the opposite effect was found at high doses (7). Another mouse study showed that DEHP (a phthalate) increased fetal and maternal testosterone levels at low doses but not at high doses (8). Effect differences at low and high doses have also been reported for many other common toxins, including BPA (9, 10), atrazine (an herbicide) (11), pyrethroid (an insecticide) (12), and more.
Toxicity susceptibility is highly individual
What determines “toxicity”? A variety of factors is important, including:- level of exposure
- duration of exposure
- frequency of exposure
- synergistic relationships (chemicals together producing an effect that is more than additive)
- timing (in utero, during puberty, while ill)
- the least studied and understood of all, human variability
How to reduce your toxic burden
We know that even low levels of toxins can be harmful and that your body’s individual ability to bioprocess and excrete toxins is difficult to fully assess. So what can you do? Some amount of exposure may be out of your control, but you can certainly strive for change:- Limit environmental toxins that are within your control. Be particular about which beauty, health, and other personal products you buy, and even consider making your own. Controlling room humidity can prevent indoor mold growth. Change any plastic food storage containers to glass or stainless steel, and use safer cookware. Consuming organic produce and animal products will greatly reduce your pesticide exposure. Consider installing a reverse osmosis water filtration system for drinking water and a filter for your shower head, as toxins can aerate when heated.
- Improve liver detox. For liver detoxification to work properly, a wide variety of macronutrients, micronutrients, cofactors, and more is required. Milk thistle is commonly used to help support detoxification, and other supplements are also available. I recommend working with a functional medicine practitioner to help optimize any detox improvement protocol.
- Improve gut health. If at all possible, avoid antibiotics, which can destroy the gut microbiome. Increase your intake of fermented vegetables like sauerkraut and, if tolerated, yogurt and raw dairy. Resistant starches like green bananas or cooked-and-cooled starchy tubers also boost gut health. And keep drinking that bone broth.
- Improve overall nutrition. Our bodies require nourishing, nutrient-dense whole foods as part of a Paleo lifestyle. Eliminate processed foods and refined sugars, which can increase inflammation and susceptibility to toxins.
from Chris Kresser https://chriskresser.com/environmental-toxins-the-elephant-in-the-room/
via Holistic Clients
No comments:
Post a Comment